Math 601 Midterm 2 Solution

Please notify me if you see any typos/errors.

Question	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
7	10	
8	10	
9	10	
Total:	100	

Question	Bonus Points	Score
Bonus Question 1	5	
Total:	5	

Question 1. (15 pts)

Determine whether each of the following statements is true or false. You do NOT need to explain.
(a) An $n \times n$ matrix A is diagonalizable if and only if A has n distinct eigenvalues.
(b) A square matrix P is orthogonal if and only if the columns of P form an orthonormal set.
(c) A square matrix is invertible if and only if its determinant is nonzero.
(d) A set of nonzero orthogonal vectors are always linearly independent.
(e) If $\Delta(t)=(t-2)^{3}(t+1)(t-4)$ is the characteristic polynomial of a matrix A, then A has at least 3 linearly independent eigenvectors.

Solution:

(a) False (e.g. the identity matrix)
(b) True
(c) True
(d) True
(e) True

Question 2. (10 pts)

Determine whether the matrix $A=\left[\begin{array}{lll}2 & 3 & 2 \\ 0 & 2 & 0 \\ 0 & 2 & 2\end{array}\right]$ is diagonalizable.

Solution: Use cofactor expansion along the first column

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
2-\lambda & 3 & 2 \\
0 & 2-\lambda & 0 \\
0 & 2 & 2-\lambda
\end{array}\right|=(2-\lambda)^{3}
$$

So $\lambda=2$ is an eigenvalue with multiplicity 3 .
Now solve for the eigenvectors belonging to $\lambda=2$, i.e. the kernel of the matrix

$$
\left|\begin{array}{lll}
0 & 3 & 2 \\
0 & 0 & 0 \\
0 & 2 & 0
\end{array}\right|
$$

So there is only one linearly independent eigenvector $v=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
We need 3 linearly independent eigenvectors for A to be diagonalizable. By the above calculation, we see that A is not diagonalizable.

Question 3. (10 pts)
The eigenvalues and corresponding eigenvectors of the matrix $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$ are $\lambda_{1}=$ -2 with $v_{1}=(1,1,0)^{T}, \lambda_{2}=-2$ with $v_{2}=(1,0,-1)^{T}$ and $\lambda_{3}=4$ with $v_{3}=(1,1,2)^{T}$. Find the general solution to the system

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x} .
$$

Solution: The general solution is

$$
\mathbf{x}(t)=c_{1} e^{-2 t}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+c_{3} e^{4 t}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

In other words,

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} e^{-2 t}+c_{2} e^{-2 t}+c_{3} e^{4 t} \\
c_{1} e^{-2 t}+c_{3} e^{4 t} \\
-c_{2} e^{-2 t}+2 c_{3} e^{4 t}
\end{array}\right]
$$

Question 4. (15 pts)
Recall that $S=\left\{1, t, t^{2}\right\}$ is a basis of $\mathbb{P}_{2}(t)$. Let $F: \mathbb{P}_{2}(t) \rightarrow \mathbb{P}_{2}(t)$ be the linear transformation defined by

$$
F(1)=1+t^{2}, F(t)=2+t+t^{2} \text { and } F\left(t^{2}\right)=-1+t-2 t^{2}
$$

(a) Write down the matrix representation of F relative to the basis $S=\left\{1, t, t^{2}\right\}$.

Solution:

$$
[F]_{S}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

(b) Find the kernel of F.

Solution: First reduce the matrix $[F]_{S}$ in part (a) to its echelon form, which is

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So $\operatorname{Ker} F=\operatorname{span}\left\{\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]\right\}$. In other words, $\operatorname{Ker} F$ is spanned of one polynomial $3-t+t^{2}$.
(c) Find the dimension of the image of F.

Solution:

$$
\operatorname{dim}(\operatorname{Im} F)+\operatorname{dim}(\operatorname{Ker} F)=3
$$

From part (b), we know that $\operatorname{dim}(\operatorname{Ker} F)=1$. So $\operatorname{dim}(\operatorname{Im} F)=2$.
(d) Is F is an isomorphism? Explain.

Solution: Since $\operatorname{Ker} F$ is not equal to the zero vector space $\{0\}$, we see that F is not an isomorphism.

Question 5. (10 pts)
Find all eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
4 & 2-i \\
2+i & 0
\end{array}\right]
$$

Solution:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
4-\lambda & 2-i \\
2+i & -\lambda
\end{array}\right|=-\lambda(4-\lambda)-5=(\lambda-5)(\lambda+1)
$$

When $\lambda=5$, the eigenvector is

$$
v=\left[\begin{array}{c}
(2-i) \\
1
\end{array}\right]
$$

When $\lambda=-1$, the eigenvector is

$$
w=\left[\begin{array}{c}
-1 \\
(2+i)
\end{array}\right]
$$

Question 6. (10 pts)
Let U be the subspace of \mathbb{R}^{4} spanned by $v_{1}=(1,7,1,7), v_{2}=(0,7,2,7)$ and $v_{3}=$ $(1,8,1,6)$. Find an orthogonal basis of U.

Solution:

$$
\begin{gathered}
w_{1}=v_{1}=(1,7,1,7) \\
w_{2}=v_{2}-\frac{\left\langle w_{1}, w_{2}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=(-1,0,1,0) \\
w_{3}=v_{3}-\frac{\left\langle w_{1}, w_{3}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle w_{2}, w_{3}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=(0,1,0,1)
\end{gathered}
$$

Question 7. (10 pts)

Let V be the vector space spanned by the basis $S=\{1, \cos t, \sin t\}$. Determine whether the functions

$$
\begin{aligned}
f_{1}(t) & =1+2 \cos t+3 \sin t \\
f_{2}(t) & =2+5 \cos t+7 \sin t \\
f_{3}(t) & =1+3 \cos t+5 \sin t
\end{aligned}
$$

are linearly independent or not. (Hint: try to use the corresponding coordinate vectors with respect to the basis S.)

Solution:

$$
\begin{aligned}
& {\left[f_{1}\right]_{S}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]} \\
& {\left[f_{2}\right]_{S}=\left[\begin{array}{l}
2 \\
5 \\
3
\end{array}\right]} \\
& {\left[f_{3}\right]_{s}=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]}
\end{aligned}
$$

Consider the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 3 \\
3 & 7 & 5
\end{array}\right]
$$

its echelon form is

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

which has rank 3 . Therefore f_{1}, f_{2} and f_{3} are linearly independent.

Question 8. (10 pts)
Let $\mathbb{P}_{2}(t)$ be the vector space of polynomials with degree ≤ 2. Suppose the linear transformaiton $B: \mathbb{P}_{2}(t) \rightarrow \mathbb{P}_{2}(t)$ is defined by

$$
B(p)=p(0)+p(1) t+p(2) t^{2}
$$

for every polynomial $p \in \mathbb{P}_{2}(t)$. Note that here $p(0)$ (resp. $p(1), p(2)$) is the value of the polynomial $p(t)$ at $t=0$ (resp. $t=1,2$). In particular, $p(0), p(1)$ and $p(2)$ are real numbers, and $p(0)+p(1) t+p(2) t^{2}$ is a polynomial in $\mathbb{P}_{2}(t)$. Show that B is an isomorphism. (Hint: try to use the matrix repsentation of B relative to a basis.)

Solution: Note that

$$
\begin{gathered}
B(1)=1+t+t^{2} \\
B(t)=t+2 t^{2} \\
B\left(t^{2}\right)=t+4 t^{2}
\end{gathered}
$$

So the matrix representation of B relative to the basis $S=\left\{1, t, t^{2}\right\}$ is

$$
[B]_{S}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right]
$$

its echelon form is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

which is invertible. So B is an isomorphism.

Question 9. (10 pts)
A function f on the complex plane \mathbb{C} is defined by

$$
f(z)=x^{2}+x+2 i x y+i y-y^{2}
$$

where $z=x+i y$. Determine whether f is entire (that is, analytic on the whole complex plane \mathbb{C}).

Solution:

$$
\begin{gathered}
u(x, y)=x^{2}+x-y^{2} \\
v(x, y)=2 x y+y
\end{gathered}
$$

We have

$$
\begin{gathered}
\frac{\partial u}{\partial x}=2 x+1, \quad \frac{\partial u}{\partial y}=-2 y \\
\frac{\partial v}{\partial x}=2 y, \quad \frac{\partial v}{\partial y}=2 x+1
\end{gathered}
$$

Clearly, all $u, v, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ are continuous on \mathbb{C}. Moreover, the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

are satisfied. Therefore, f is entire.

Bonus Question 1. (5 pts)
Consider the system of differential equations in Question 3 again:

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

where $A=\left[\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]$. In Question 3 , you have find the general solution $\mathbf{x}(t)$ of the system. Fidn find a specific solution $\mathbf{x}(t)$ such that

$$
\mathbf{x}(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

when $t=0$. (Such a solution is called a solution of the above system with the given initial condition).

Solution: From the solution of Question 3, we have

$$
\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0) \\
x_{3}(0)
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+c_{3} \\
-c_{2}+2 c_{3}
\end{array}\right] .
$$

Therefore, we need to solve for c_{1}, c_{2} and c_{3} of the following linear system

$$
\left[\begin{array}{c}
c_{1}+c_{2}+c_{3} \\
c_{1}+c_{3} \\
-c_{2}+2 c_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

which has a unique solution $c_{1}=2, c_{2}=-3$ and $c_{3}=-1$. So the solution satisfying the given initial condition is

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-e^{-2 t}-e^{4 t} \\
2 e^{-2 t}-e^{4 t} \\
3 e^{-2 t}-2 e^{4 t}
\end{array}\right]
$$

